skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Fitzgerald, Michael P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Resolving fine details of astronomical objects provides critical insights into their underlying physical processes. This drives in part the desire to construct ever-larger telescopes and interferometer arrays and to observe at shorter wavelengths to lower the diffraction limit of angular resolution. Alternatively, one can aim to overcome the diffraction limit by extracting more information from a single telescope’s aperture. A promising way to do this is spatial-mode-based imaging, which projects a focal-plane field onto a set of spatial modes before detection, retaining focal-plane phase information that is crucial at small angular scales but typically lost in intensity imaging. However, the practical implementation of mode-based imaging in astronomy from the ground has been challenged by atmospheric turbulence. Here, we present the first on-sky demonstration of a subdiffraction-limited mode-based measurement, using a photonic-lantern-fed spectrometer installed on the Subaru Coronagraphic Extreme Adaptive Optics instrument at the Subaru Telescope. We introduce a novel calibration strategy that mitigates time-varying wave-front error and misalignment effects, leveraging simultaneously recorded focal-plane images and using a spectral-differential technique that self-calibrates the data. Observing the classical Be starβCMi, we detect spectral-differential spatial signals and reconstruct images of its Hα-emitting disk. We achieve an unprecedented Hαphotocenter precision of ∼50μas in about 10 minutes of observation with a single telescope, measuring the disk’s nearside–farside asymmetry for the first time. This work demonstrates the high precision, efficiency, and practicality of photonic mode-based imaging techniques in recovering subdiffraction-limited information, opening new avenues for high-angular-resolution spectroscopic studies in astronomy. 
    more » « less
  2. Sallum, Stephanie; Sanchez-Bermudez, Joel; Kammerer, Jens (Ed.)
  3. We present several nonlinear wavefront sensing techniques for few-mode sensors, all of which are empirically calibrated and agnostic to the choice of wavefront sensor. The first class of techniques involves a straightforward extension of the linear phase retrieval scheme to higher order; the resulting Taylor polynomial can then be solved using the method of successive approximations, though we discuss alternate methods such as homotopy continuation. In the second class of techniques, a model of the WFS intensity response is created using radial basis function interpolation. We consider both forward models, which map phase to intensity and can be solved with nonlinear least-squares methods such as the Levenberg-Marquardt algorithm, as well as backwards models, which directly map intensity to phase and do not require a solver. We provide demonstrations for both types of techniques in simulation using a quad-cell sensor and a photonic lantern wavefront sensor as examples. Next, we demonstrate how the nonlinearity of an arbitrary sensor may be studied using the method of numerical continuation, and apply this technique both to the quad-cell sensor and a photonic lantern sensor. Finally, we briefly consider the extension of nonlinear techniques to polychromatic sensors. 
    more » « less
  4. Adaptive optics (AO) systems are critical in any application where highly resolved imaging or beam control must be performed through a dynamic medium. Such applications include astronomy and free-space optical communications, where light propagates through the atmosphere, as well as medical microscopy and vision science, where light propagates through biological tissues. Recent works have demonstrated common-path wavefront sensors (WFSs) for adaptive optics using the photonic lantern (PL), a slowly varying waveguide that can efficiently couple multi-moded light into single-mode fibers (SMFs). We use the SCExAO astrophotonics platform at the 8 m Subaru Telescope to show that spectral dispersion of lantern outputs can improve correction fidelity, culminating with an on-sky demonstration of real-time wavefront control. This is the first, to the best of our knowledge, result for either a spectrally dispersed or a photonic lantern wavefront sensor. Combined with the benefits offered by lanterns in precision spectroscopy, our results suggest the future possibility of a unified wavefront sensing spectrograph using compact photonic devices. 
    more » « less
  5. Abstract Photonic lanterns (PLs) are tapered waveguides that gradually transition from a multimode fiber geometry to a bundle of single-mode fibers (SMFs). They can efficiently couple multimode telescope light into a multimode fiber entrance at the focal plane and convert it into multiple single-mode beams. Thus, each SMF samples its unique mode (lantern principal mode) of the telescope light in the pupil, analogous to subapertures in aperture masking interferometry (AMI). Coherent imaging with PLs can be enabled by the interference of SMF outputs and applying phase modulation, which can be achieved using a photonic chip beam combiner at the backend (e.g., the ABCD beam combiner). In this study, we investigate the potential of coherent imaging by the interference of SMF outputs of a PL with a single telescope. We demonstrate that the visibilities that can be measured from a PL are mutual intensities incident on the pupil weighted by the cross correlation of a pair of lantern modes. From numerically simulated lantern principal modes of a 6-port PL, we find that interferometric observables using a PL behave similarly to separated-aperture visibilities for simple models on small angular scales (<λ/D) but with greater sensitivity to symmetries and capability to break phase angle degeneracies. Furthermore, we present simulated observations with wave front errors (WFEs) and compare them to AMI. Despite the redundancy caused by extended lantern principal modes, spatial filtering offers stability to WFEs. Our simulated observations suggest that PLs may offer significant benefits in the photon-noise-limited regime and in resolving small angular scales at the low-contrast regime. 
    more » « less
  6. Sallum, Stephanie; Sanchez-Bermudez, Joel; Kammerer, Jens (Ed.)
  7. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
  8. Ruane, Garreth J (Ed.)